Abdel-Rahman, O. (2021). Disparities in modifiable cancer risk factors among canadian provinces, territories, and health regions [Journal Article].
Current Medical Research and Opinion,
37, 1–17.
https://doi.org/10.1080/03007995.2021.1971184
Aguilar, O., & West, M. (2000). Bayesian dynamic factor models and portfolio allocation [Journal Article]. Journal of Business and Economic Statistics, 18(3), 338–357.
AIHW. (2018).
Australia’s health 2018 [Report].
Australian Institute of Health; Welfare.
https://doi.org/10.25816/5ec1e56f25480
AIHW. (2019).
Australian burden of disease study: Impact and causes of illness and death in Australia 2015 [Report].
Australian Institute of Health; Welfare.
https://doi.org/10.25816/5ebca2a4fa7dc
Australian Bureau of Statistics. (2017). 4363.0 - national health survey: Users’ guide, 2017-18 [Dataset].
Bannick, M. S., McGaughey, M., & Flaxman, A. D. (2019). Ensemble modelling in descriptive epidemiology:
Burden of disease estimation.
International Journal of Epidemiology,
49(6), 2065–2073.
https://doi.org/10.1093/ije/dyz223
Berkowitz, Z., Zhang, X. Y., Richards, T. B., Peipins, L., Henley, J., & Holt, J. (2016). Multilevel small-area estimation of multiple cigarette smoking status categories using the 2012
Behavioral Risk Factor Surveillance System [Journal Article].
Cancer Epidemiology Biomarkers and Prevention,
25(10), 1402–1410.
https://doi.org/10.1158/1055-9965.Epi-16-0244
CDC. (2021).
PLACES: Local data for better health [Web Page].
Centre for Disease Control.
https://www.cdc.gov/places
Chidumwa, G., Maposa, I., Kowal, P., Micklesfield, L. K., & Ware, L. J. (2021). Bivariate joint spatial modeling to identify shared risk patterns of hypertension and diabetes in south africa: Evidence from WHO SAGE south africa wave 2 [Journal Article]. International Journal of Environmental Research and Public Health, 18(1), 359.
Cramb, S., Duncan, E., Baade, P., & Mengersen, K. L. (2020). A comparison of
Bayesian spatial models for cancer incidence at a small area level: Theory and performance [Book Section]. In K. L. Mengersen, P. Pudlo, & C. P. Robert (Eds.),
Case studies in applied Bayesian data science (pp. 245–274). Springer International Publishing.
https://doi.org/10.1007/978-3-030-42553-1_10
Das, S., Brakel, J. van den, Boonstra, H. J., & Haslett, S. (2022). Multilevel time series modelling of antenatal care coverage in bangladesh at disaggregated administrative levels.
Survey Methodology,
48(2).
http://www.statcan.gc.ca/pub/12-001-x/2022002/article/00010-eng.htm
DOHWA. (2020). Western Australian burden of disease study 2015 - summary report [Report]. Department of Health Western Australia; Department of Health WA.
Duncan, E. W., Cramb, S. M., Aitken, J. F., Mengersen, K. L., & Baade, P. D. (2019). Development of the
Australian cancer atlas: Spatial modelling, visualisation, and reporting of estimates [Journal Article].
International Journal of Health Geographics,
18(1).
https://doi.org/10.1186/s12942-019-0185-9
Fay, R. E., & Herriot, R. A. (1979). Estimates of income for small places: An application of james-stein procedures to census data [Journal Article].
Journal of the American Statistical Association,
74(366), 269–277.
https://doi.org/10.2307/2286322
Foreman, K. J., Lozano, R., Lopez, A. D., & Murray, C. J. (2012). Modeling causes of death: An integrated approach using
CODEm.
Population Health Metrics,
10(1), 1.
https://doi.org/10.1186/1478-7954-10-1
Fotheringham, A. S., & Wong, D. W. S. (1991). The modifiable areal unit problem in multivariate statistical analysis [Journal Article].
Environment and Planning A: Economy and Space,
23(7), 1025–1044.
https://doi.org/10.1068/a231025
Gao, P. A., & Wakefield, J. (2023). Smoothed model-assisted small area estimation of proportions.
Canadian Journal of Statistics. https://doi.org/
https://doi.org/10.1002/cjs.11787
GBD 2015 Chronic Respiratory Disease Collaborators. (2017). Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the global burden of disease study 2015.
Lancet Respiratory Medicine,
5(9).
https://doi.org/10.1016/S2213-2600(17)30293-X
Health, N., & Council, M. R. (2013). Australian dietary guidelines [Report]. National Health; Medical Research Council.
Hedibert, F. L., Alexandra, M. S., Esther, S., Mariana, G., & Marcel, A. (2012). Measuring the vulnerability of the uruguayan population to vector-borne diseases via spatially hierarchical factor models [Journal Article].
The Annals of Applied Statistics,
6(1), 284–303.
https://doi.org/10.1214/11-AOAS497
Hermes, K., & Poulsen, M. (2012). Small area estimates of smoking prevalence in london. Testing the effect of input data [Journal Article].
Health and Place,
18(3), 630–638.
https://doi.org/10.1016/j.healthplace.2011.12.010
Hogan, J. W., & Tchernis, R. (2004).
Bayesian factor analysis for spatially correlated data, with application to summarizing area-level material deprivation from census data [Journal Article].
Journal of the American Statistical Association,
99(466), 314–324.
https://doi.org/10.1198/016214504000000296
Knorr-Held, L., & Best, N. G. (2001). A shared component model for detecting joint and selective clustering of two diseases [Journal Article].
Journal of the Royal Statistical Society Series A: Statistics in Society,
164(1), 73–85.
https://doi.org/10.1111/1467-985X.00187
Lee, D. (2011). A comparison of conditional autoregressive models used in
Bayesian disease mapping [Journal Article].
Spatial and Spatio-Temporal Epidemiology,
2(2), 79–89.
https://doi.org/10.1016/j.sste.2011.03.001
Leroux, B., Lei, X., & Breslow, N. (2000). Estimation of disease rates in small areas: A new mixed model for spatial dependence [Book Section]. In Statistical models in epidemiology, the environment, and clinical trials (Vol. 116, pp. 179–191). Springer.
MacNab, Y. C. (2007). Mapping disability-adjusted life years: A
Bayesian hierarchical model framework for burden of disease and injury assessment [Journal Article].
Statistics in Medicine,
26(26), 4746–4769. https://doi.org/
https://doi.org/10.1002/sim.2890
MacNab, Y. C. (2009).
Bayesian multivariate disease mapping and ecological regression with errors in covariates:
Bayesian estimation of DALYs and
“preventable” DALYs [Journal Article].
Statistics in Medicine,
28(9), 1369–1385. https://doi.org/
https://doi.org/10.1002/sim.3547
Mezzetti, M. (2012).
Bayesian factor analysis for spatially correlated data: Application to cancer incidence data in scotland [Journal Article].
Statistical Methods and Applications,
21, 49–74. https://doi.org/
https://doi.org/10.1007/s10260-011-0177-9
Murray, C., & Acharya, A. (1997). Understanding DALYs.
Journal of Health Economics,
16, 703–730.
https://doi.org/10.1016/s0167-6296(97)00004-0
Naghavi, M., Abajobir, A. A., Abbafati, C., Abbas, K. M., Abd-Allah, F., Abera, S. F., Aboyans, V., Adetokunboh, O., Afshin, A., Agrawal, A., Ahmadi, A., Ahmed, M. B., Aichour, A. N., Aichour, M. T. E., Aichour, I., Aiyar, S., Alahdab, F., Al-Aly, Z., Alam, K., … Murray, C. J. L. (2017). Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the
Global Burden of Disease Study 2016.
The Lancet,
390(10100), 1151–1210. https://doi.org/
https://doi.org/10.1016/S0140-6736(17)32152-9
Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffmann, A., Giovannini, E., Stevens, C., Baygan, G., Olsen, K., & Moore, S. (2008).
Handbook on constructing composite indicators [Report]. European Commission.
https://www.oecd.org/els/soc/handbookonconstructingcompositeindicatorsmethodologyanduserguide.htm
National Health and Medical Research Council. (2020).
Australian guidelines to reduce health risks from drinking alcohol [Report]. National Health; Medical Research Council.
https://doi.org/978-1-86496-071-6
Nethery, R. C., Warren, J. L., Herring, A. H., Moore, K. A., Evenson, K. R., & Diez-Roux, A. V. (2015). A common spatial factor analysis model for measured neighborhood-level characteristics: The multi-ethnic study of atherosclerosis [Journal Article].
Health Place,
36, 35–46.
https://doi.org/10.1016/j.healthplace.2015.08.009
Norwood, T. A., Encisa, C., Wang, X., Seliske, L., Cunningham, J., & De, P. (2020). A
Bayesian shared components modeling approach to develop small area indicators of social determinants of health with measures of uncertainty [Journal Article].
Canadian Journal of Public Health,
111(3), 342–357.
https://doi.org/10.17269/s41997-020-00321-6
Park, D. K., Gelman, A., & Bafumi, J. (2004). Bayesian multilevel estimation with poststratification: State-level estimates from national polls [Journal Article]. Political Analysis, 12(4), 375–385.
Parker, P. A., Janicki, R., & Holan, S. H. (2020). Unit level modeling of survey data for small area estimation under informative sampling: A comprehensive overview with extensions [Journal Article].
arXiv Preprint arXiv:1908.10488v2.
https://doi.org/arXiv:1908.10488v2
Patterson, K. A. E., Cleland, V., Venn, A., Blizzard, L., & Gall, S. (2014). A cross-sectional study of geographic differences in health risk factors among young
Australian adults: The role of socioeconomic position [Journal Article].
BMC Public Health,
14(1).
https://doi.org/10.1186/1471-2458-14-1278
PHIDU. (2018).
Social health atlases of Australia [Online Database]. Public Health Information Development Unit.
https://phidu.torrens.edu.au/social-health-atlases
Rao, J. N. K., & Molina, I. (2015). Small area estimation (2nd ed.) [Book]. Wiley Series in Survey Methodology.
Riebler, A., Sørbye, S. H., Simpson, D., & Rue, H. (2016). An intuitive
Bayesian spatial model for disease mapping that accounts for scaling.
Statistical Methods in Medical Research,
25(4), 1145–1165.
https://doi.org/10.1177/0962280216660421
Ritchie, H., & Roser, M. (2017).
Obesity (Web Page November 2021).
https://ourworldindata.org/obesity
Savitsky, T. D., & Toth, D. (2016). Bayesian estimation under informative sampling [Journal Article]. Electronic Journal of Statistics, 10(1), 1677–1708.
Schmidt, J., Fox, S., Hughes, A., Betts, A., Flowers, J., Newton, J., & Clark, S. (2020).
The Burden of Disease in England compared with 22 peer countries: A report for NHS England [Report]. Public Health England.
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/856938/GBD_NHS_England_report.pdf
Stan Development Team. (2023).
Stan [Computer Program].
https://mc-stan.org
Steel, N., Ford, J. A., Newton, J. N., Davis, A. C. J., Vos, T., Naghavi, M., Glenn, S., Hughes, A., Dalton, A. M., Stockton, D., Humphreys, C., Dallat, M., Schmidt, J., Flowers, J., Fox, S., Abubakar, I., Aldridge, R. W., Baker, A., Brayne, C., … Murray, C. J. L. (2018). Changes in health in the countries of the UK and 150 english local authority areas 1990–2016: A systematic analysis for the global burden of disease study 2016.
The Lancet,
392(10158), 1647–1661.
https://doi.org/10.1016/S0140-6736(18)32207-4
Valpine, P. de, Turek, D., Paciorek, C. J., Anderson-Bergman, C., Lang, D. T., & Bodik, R. (2017). Programming with models: Writing statistical algorithms for general model structures with NIMBLE [Journal Article].
Journal of Computational and Graphical Statistics,
26(2), 403–413.
https://doi.org/10.1080/10618600.2016.1172487
Vandendijck, Y., Faes, C., Kirby, R. S., Lawson, A., & Hens, N. (2016). Model-based inference for small area estimation with sampling weights [Journal Article].
Spatial Statistics,
18, 455–473.
https://doi.org/10.1016/j.spasta.2016.09.004
Wang, F., & Wall, M. M. (2003). Generalized common spatial factor model [Journal Article].
Biostatistics,
4(4), 569–582.
https://doi.org/10.1093/biostatistics/4.4.569
Zhang, J. L., & Bryant, J. (2020). Fully
Bayesian benchmarking of small area estimation models [Journal Article].
Journal of Official Statistics,
36(1), 197–223.
https://doi.org/10.2478/jos-2020-0010
Social Health Atlas of Australia 1
😊 Prevalence estimates of cancer risk factors for small areas
😨 Estimates suffer from resolution and reach issues